Microtubule disruption by colchicine reversibly enhances calcium signaling in intact rat cardiac myocytes.

نویسندگان

  • B G Kerfant
  • G Vassort
  • A M Gómez
چکیده

Using the whole-cell patch-clamp configuration in rat ventricular myocytes, we recently reported that microtubule disruption increases calcium current (I(Ca)) and [Ca(2+)](i) transient and accelerates their kinetics by adenylyl cyclase activation. In the present report, we further analyzed the effects of microtubule disruption by 1 micromol/L colchicine on Ca(2+) signaling in cardiac myocytes with intact sarcolemma. In quiescent intact cells, it is possible to investigate ryanodine receptor (RyR) activity by analyzing the characteristics of spontaneous Ca(2+) sparks. Colchicine treatment decreased Ca(2+) spark amplitude (F/F(0): 1.78+/-0.01, n=983, versus 1.64+/-0.01, n=1660, recorded in control versus colchicine-treated cells; P<0.0001) without modifying the sarcoplasmic reticulum Ca(2+) load and enhanced their time to peak (in ms: 6.85+/-0.09, n=1185, versus 7.33+/-0.13, n=1647; P<0.0001). Microtubule disruption also induced the appearance of Ca(2+) sparks in doublets. These alterations may reflect RyR phosphorylation. To further investigate Ca(2+) signaling in cardiac myocytes with intact sarcolemma, we analyzed [Ca(2+)](i) transient evoked by field stimulation. Cells were loaded with the fluorescence Ca(2+) indicator, Fluo-3 cell permeant, and stimulated at 1 HZ: [Ca(2+)](i) transient amplitude was greater and its decay was accelerated in colchicine-treated, field-stimulated myocytes. This effect is reversible. When colchicine-treated myocytes were placed in a colchicine-free solution for 30 minutes, tubulin was repolymerized into microtubules, as shown by immunofluorescence, and the increase in [Ca(2+)](i) transient was reversed. In summary, we demonstrate that microtubule disruption by colchicine reversibly modulates Ca(2+) signaling in cardiac cells with intact sarcolemma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of Ca(2+) signaling by microtubule disruption in rat ventricular myocytes and its dependence on the ruptured patch-clamp configuration.

In the absence of hypertrophic proliferation of microtubules, microtubule disruption by colchicine does not modulate contraction of adult cardiac myocytes. However, Gomez et al (Circ Res. 2000;86:30-36) recently reported that disruption of microtubules by colchicine in ruptured patch-clamped myocytes increased I(Ca,L) density and [Ca(2+)](i) transient amplitude and depressed the response of the...

متن کامل

Modulation of Ca Signaling by Microtubule Disruption in Rat Ventricular Myocytes and Its Dependence on the Ruptured Patch-Clamp Configuration

In the absence of hypertrophic proliferation of microtubules, microtubule disruption by colchicine does not modulate contraction of adult cardiac myocytes. However, Gomez et al (Circ Res. 2000;86:30–36) recently reported that disruption of microtubules by colchicine in ruptured patch-clamped myocytes increased ICa,L density and [Ca ]i transient amplitude and depressed the response of these para...

متن کامل

Microtubule Disruption Modulates Ca Signaling in Rat Cardiac Myocytes

Microtubules have been shown to alter contraction in cardiac myocytes through changes in cellular stiffness. However, an effect on excitation-contraction coupling has not been examined. Here we analyze the effects of microtubule disruption by 1 mmol/L colchicine on calcium currents (ICa) and [Ca ]i transients in rat ventricular myocytes. ICa was studied using the whole-cell patch-clamp techniqu...

متن کامل

Microtubule disruption modulates Ca(2+) signaling in rat cardiac myocytes.

Microtubules have been shown to alter contraction in cardiac myocytes through changes in cellular stiffness. However, an effect on excitation-contraction coupling has not been examined. Here we analyze the effects of microtubule disruption by 1 micromol/L colchicine on calcium currents (I(Ca)) and [Ca(2+)](i) transients in rat ventricular myocytes. I(Ca) was studied using the whole-cell patch-c...

متن کامل

An estrogen metabolite, 2-methoxyestradiol, disrupts cardiac microtubules and unmasks muscarinic inhibition of calcium current.

Microtubules provide a chemical signaling function as well as structural support for heart cells. Microtubules modulate autonomic signaling in the heart, and their disruption by colchicine unmasks muscarinic inhibition of Ca (ICa) current. In this study, we compare the actions of the estrogen metabolite, 2-methoxyestradiol (2-ME), with those of colchicine on microtubule stability and chemical s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 88 7  شماره 

صفحات  -

تاریخ انتشار 2001